[Home ] [Archive]   [ فارسی ]  
Main Menu
Home
Journal Information
Aims& Scopes
Editorial Board
About the Journal
Journal News
Articles archive
All Issues
Current Issue
Browse by Authors
Browse by Keywords
For Authors
Call for Papers
Submission Instruction
Submission Form
For Reviewers
Reviewers Section
Registration
Registration Information
Registration Form
Contact us
Contact Information
Contact us
Site Facilities
Site map
Search contents
FAQ
Top 10 contents
Inform to friends
::
MBRI Journals

Journal of Money & Economy

AWT IMAGE

(رتبه علمی-پژوهشی)

..
Related Journals

Journal of Islamic Finance Research

AWT IMAGE

(Biannual)

..
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
:: year 17, Issue 60 (9-2024) ::
JMBR 2024, 17(60): 261-293 Back to browse issues page
A Network Analysis of Volatility Connectedness among Cryptocurrencies: A Quantile Vector Autoregressive Approach
Reza Taleblou *1 , Parisa Mohajeri1 , Shakiba Lasgari2
1- associate professor faculty of economics, Allameh Tabataba'i University & -
2- Master Student of Economics, Allameh Tabataba'i University & -
Abstract:   (284 Views)
This study employs a Quantitative Vector Autoregressive (QVAR)-based connectedness approach to explore the volatility transmission among 16 major cryptocurrencies that collectively represent over 90% of the total market cap from January 2018 to July 2024. The analysis reveals three key findings. First, the total connectedness index stands at 83.17%, signifying substantial volatility spillovers among the examined cryptocurrencies. Second, Ethereum and Eos emerge as the most influential transmitters of shocks, serving as leading indicators in market analysis and driving market shifts. In contrast, Dogecoin and Filecoin are identified as the primary receivers of shocks, functioning as follower indicators. Third, cryptocurrencies like Bitcoin, Bitcoin Cash, Litecoin, Stellar, Dashcoin, and Neo act as volatility transmitters, while Ripple, Tron, Binance Coin, Chainlink, Theta Network, and Monero primarily behave as receivers of volatilities. These insights offer valuable guidance for investors in making strategic risk management decisions by enhancing their understanding of the volatility spillover dynamics among cryptocurrency returns.
 
Article number: 4
Full-Text [PDF 1162 kb]   (74 Downloads)    
Type of Study: Empirical Study | Subject: Financial Institutions and Services (G2)
Received: 2024/10/16 | Accepted: 2024/12/10 | Published: 2025/01/19
References
1. ابونوری، ا. و ضیاالدین، ح. (1398). بازدهی و تلاطم بین قیمت جهانی نفت و شاخص بازار سهام در کشورهای عضو اوپک. مدلسازی اقتصادی، 14(49)،24-1.
2. احمدی، ح.ر.، هاشمی‌نژاد، س. م.، و محمودی، م. (1401). بررسی سرریز ریسک بازار رمز‌ارزها با بازارهای مالی داخلی. دانش سرمایه‌گذاری، 14(53)، 574-551.
3. باقری، س. و انصاری سامانی، ح. (1399). بررسی اثرات سرریز بحران های مالی جهانی بر بازار نفت اوپک. نشریهٔ انرژی ایران، 23(3)، 85-103.
4. پوریعقوبی، ه. و اشرفی، ی. (1396). سرایت‌پذیری تلاطم بازده میان صنایع مختلف بازار سرمایهٔ ایران. دانش سرمایه‌گذاری، 9(34)، 277-293.
5. توکلیان، ح. و اعتمادی، س. ا.، و تهرانی، ر. (1396). بررسی سرریز تلاطم بازده شاخص قیمت نفت برنت بر بازده شاخص‌های کل و صنایع مرتبط با قیمت نفت در بازارهای مالی ایران و امریکا با استفاده از مدل MGARCH. پژوهشنامهٔ اقتصاد انرژی ایران، 6(21)، 61-33.
6. حاجیلو مقدم، ا.ح.، شکری، ن.، و زیستی، س. (1402). بررسی اثرات سرریز رمز‌ارزهای منتخب با تأکید بر تأثیر آن‌ها بر طلا در دوران قبل و بعد از پاندمی کووید-۱۹ و نقش دولت (کاربرد رویکرد انسجام موجک). مطالعات اقتصاد بخش عمومی، 2(2)، 134-115.
7. حسینی ابراهیم‌آباد، س. ع.، جهانگیری، خ.، حیدری، ح.، و قائمی اصل، م. (1397). بررسی سرریزهای تکانه و تلاطم میان شاخص‌های منتخب بورس اوراق بهادار تهران با استفاده از مدل Asymmetric BEKK-GARCH. فصلنامهٔ مطالعات اقتصادی کاربردی ایران، 8(29)، 155-123.
8. خیابانی، ن. و محمدیان نیک‌پی، ا. (1397). تحلیل ریسک سیستمی در صنایع منتخب بورس اوراق بهادار تهران: یک رویکرد رگرسیون چندکی چندمتغیره. پژوهش‌های اقتصادی ایران، 23(77)، 36-1.
9. شکری، ن.، سحاب خدامرادی، م.، و حاجیلو‌مقدم، امیرحسین (1400). بررسی اثرات تلاطمات مالی میان رمز‌ارزهای: کاربرد رهیافت گارچ چندمتغیره (BEKK-GARCH). چشم‌انداز مدیریت مالی، 11(35)، 172-143.
10. مهاجری، پ. و طالبلو، ر. (1401). بررسی پویایی‌های سرریز تلاطمات بین بازده بخش‌ها با رویکرد اتصالات خودرگرسیون برداری با پارامترهای متغیر در طول زمان (TVP-VAR)؛ شواهدی از بازار سهام ایران. مجلهٔ تحقیقات اقتصادی، 57(2)، 321-356.
11. مهاجری، پ. (1402). تحلیل شبکه‌ای از اتصالات نامتقارن نوسانات و کاربرد آن در سبدسازی سهام. بورس اوراق بهادار، 16، 109-146.
12. مهاجری، پ.، طالبلو، ر. و رنج‌خواه زنوزقی، س. (1403). برآورد ریسک سیستمی پویا و سرریز تلاطمات بازار نفت بر بازار سهام کشورهای عضو اوپک پلاس؛ رویکرد QVAR. تحقیقات اقتصادی، 59 (3)، 386-414.
13. Afjal, M., & Clanganthuruthil Sajeev, K. (2022). Interconnection between cryptocurrencies and energy markets: An analysis of volatility spillover. OPEC Energy Review, 46(3), 287-309.‏ [DOI:10.1111/opec.12227]
14. Alamaren, A. S., Gokmenoglu, K. K., & Taspinar, N. (2024). Volatility spillovers among leading cryptocurrencies and US energy and technology companies. Financial Innovation, 10(1), 81.‏ [DOI:10.1186/s40854-024-00626-2]
15. Antonakakis, N., Chatziantoniou, I., & Gabauer, D. (2020). Refined measures of dynamic connectedness based on time-varying parameter vector autoregressions. Journal of Risk and Financial Management, 13(4), 84. [DOI:10.3390/jrfm13040084]
16. Attarzadeh, A., & Balcilar, M. (2022). On the dynamic return and volatility connectedness of cryptocurrency, crude oil, clean energy, and stock markets: a time-varying analysis. Environmental Science and Pollution Research, 29(43), 65185-65196.‏ [DOI:10.1007/s11356-022-20115-2] [PMID] []
17. Baur, D. G., Dimpfl, T., & Kuck, K. (2018). Bitcoin, gold and the US dollar-A replication and extension. Finance research letters, 25, 103-110.‏ [DOI:10.1016/j.frl.2017.10.012]
18. Bouri, E., Lau, C. K. M., Lucey, B., & Roubaud, D. (2019). Trading volume and the predictability of return and volatility in the cryptocurrency market. Finance Research Letters, 29, 340-346. [DOI:10.1016/j.frl.2018.08.015]
19. Canh, N. P., Wongchoti, U., Thanh, S. D., & Thong, N. T. (2019). Systematic risk in cryptocurrency market: Evidence from DCC-MGARCH model. Finance Research Letters, 29, 90-100.‏ [DOI:10.1016/j.frl.2019.03.011]
20. Chatziantoniou, I., Abakah, E. J. A., Gabauer, D., & Tiwari, A. K. (2022). Quantile time-frequency price connectedness between green bond, green equity, sustainable investments and clean energy markets. Journal of Cleaner Production, 361, 132088.‏ [DOI:10.1016/j.jclepro.2022.132088]
21. Chatziantoniou, I., Gabauer, D., & Stenfors, A. (2021). Interest rate swaps and the transmission mechanism of monetary policy: A quantile connectedness approach. Economics Letters, 204, 109891.‏ [DOI:10.1016/j.econlet.2021.109891]
22. Corbet, S., Meegan, A., Larkin, C., Lucey, B., & Yarovaya, L. (2018). Exploring the dynamic relationships between cryptocurrencies and other financial assets. Economics letters, 165, 28-34.‏ [DOI:10.1016/j.econlet.2018.01.004]
23. Diebold, F. X., & Yilmaz, K. (2012). Better to give than to receive: Predictive directional measurement of volatility spillovers. International Journal of forecasting, 28(1), 57-66. [DOI:10.1016/j.ijforecast.2011.02.006]
24. Diebold, F. X., & Yılmaz, K. (2014). On the network topology of variance decompositions: Measuring the connectedness of financial firms. Journal of econometrics, 182(1), 119-134.‏ [DOI:10.1016/j.jeconom.2014.04.012]
25. Dyhrberg, A. H. (2016). Bitcoin, gold and the dollar-A GARCH volatility analysis. Finance research letters, 16, 85-92.‏ [DOI:10.1016/j.frl.2015.10.008]
26. Ghaemi Asl, M., Bouri, E., Darehshiri, S., & Gabauer, D. (2021). Good and bad volatility spillovers in the cryptocurrency market: New Evidence from a TVP-VAR asymmetric connectedness approach. Journal of Financial Research, 45(2), 123-139. [DOI:10.2139/ssrn.3957317]
27. Ghorbel, A., & Jeribi, A. (2021). Investigating the relationship between volatilities of cryptocurrencies and other financial assets. Decisions in Economics and Finance, 44(2), 817-843.‏ [DOI:10.1007/s10203-020-00312-9] []
28. Gong, X. L., Zhao, M., Wu, Z. C., Jia, K. W., & Xiong, X. (2023). Research on tail risk contagion in international energy markets-the quantile time-frequency volatility spillover perspective. Energy Economics, 121, 106678.‏ [DOI:10.1016/j.eneco.2023.106678]
29. Huynh, T. L. D., Nasir, M. A., Vo, X. V., & Nguyen, T. T. (2020). Small things matter most: The spillover effects in the cryptocurrency market and gold as a silver bullet. The North American Journal of Economics and Finance, 54, 101277.‏ [DOI:10.1016/j.najef.2020.101277] []
30. Huynh, T. L. D., Nasir, M. A., Vo, X. V., & Nguyen, T. T. (2020). Small things matter most: The spillover effects in the cryptocurrency market and gold as a silver bullet. The North American Journal of Economics and Finance, 54, 101277.‏ [DOI:10.1016/j.najef.2020.101277] []
31. Jan, H. F. (2021). An Examination of Herding Behaviour in the Cryptomarket (Doctoral dissertation, CAPITAL UNIVERSITY).‏
32. Jia, Y., Wu, Y., Yan, S., & Yin, C. (2019). A Seesaw Effect in the Cryptocurrency Market: Understanding the Lead-Lag effect among cryptocurrencies. Available at SSRN 3465924.‏ [DOI:10.2139/ssrn.3465924]
33. Katsiampa, P. (2017). Volatility estimation for Bitcoin: A comparison of GARCH models. Economics letters, 158, 3-6.‏ [DOI:10.1016/j.econlet.2017.06.023]
34. Katsiampa, P., Corbet, S., & Lucey, B. (2019). Volatility spillover effects in leading cryptocurrencies: A BEKK-MGARCH analysis. Finance Research Letters, 29, 68-74.‏ [DOI:10.1016/j.frl.2019.03.009]
35. Koop, G., Pesaran, M. H., & Potter, S. M. (1996). Impulse response analysis in nonlinear multivariate models. Journal of econometrics, 74(1), 119-147. [DOI:10.1016/0304-4076(95)01753-4]
36. Koutmos, D. (2018). Return and volatility spillovers among cryptocurrencies. Economics Letters, 173, 122-127.‏ [DOI:10.1016/j.econlet.2018.10.004]
37. Kumar, A. S., & Anandarao, S. (2019). Volatility spillover in crypto-currency markets: Some evidences from GARCH and wavelet analysis. Physica A: statistical mechanics and its applications, 524, 448-458.‏ [DOI:10.1016/j.physa.2019.04.154]
38. Kumar, A. S., & Anandarao, S. (2019). Volatility spillover in crypto-currency markets: Some evidences from GARCH and wavelet analysis. Physica A: statistical mechanics and its applications, 524, 448-458.‏ [DOI:10.1016/j.physa.2019.04.154]
39. Liu, J., & Serletis, A. (2019). Volatility in the cryptocurrency market. Open Economies Review, 30(4), 779-811.‏ [DOI:10.1007/s11079-019-09547-5]
40. Naimy, V. Y., & Hayek, M. R. (2018). Modelling and predicting the Bitcoin volatility using GARCH models. International Journal of Mathematical Modelling and Numerical Optimisation, 8(3), 197-215.‏ https://doi.org/10.1504/IJMMNO.2018.088994 [DOI:10.1504/IJMMNO.2018.10009955]
41. Omane-Adjepong, M., & Alagidede, I. P. (2019). Multiresolution analysis and spillovers of major cryptocurrency markets. Research in International Business and Finance, 49, 191-206.‏ [DOI:10.1016/j.ribaf.2019.03.003]
42. Özdemir, O. (2022). Cue the volatility spillover in the cryptocurrency markets during the COVID-19 pandemic: Evidence from DCC-GARCH and wavelet analysis. Financial Innovation, 8(1), 12.‏ [DOI:10.1186/s40854-021-00319-0] [PMID] []
43. Pesaran, H. H., & Shin, Y. (1998). Generalized impulse response analysis in linear multivariate models. Economics letters, 58(1), 17-29.‏ [DOI:10.1016/S0165-1765(97)00214-0]
44. Ruiz, N. V. (2014). Volatility in financial markets: The impact of the global financial crisis (Doctoral dissertation, Universitat de Barcelona).‏
45. Sahoo, S., Behera, H., & Trivedi, P. (2018). Volatility spillovers between forex and stock markets in India. RBI Occasional Papers, 38(1), 33-63.‏
46. Shahzad, S. J. H., Bouri, E., Kang, S. H., & Saeed, T. (2021). Regime specific spillover across cryptocurrencies and the role of COVID-19. Financial Innovation, 7, 1-24.‏ [DOI:10.1186/s40854-020-00210-4] [PMID] []
47. Taleblou, R., & Mohajeri, P. (2023). Modeling the Daily Volatility of Oil, Gold, Dollar, Bitcoin and Iranian Stock Markets: An Empirical Application of a Nonlinear Space State Model. Iranian Economic Review, 27(3), 1033-1063.‏
48. Taleblou, R., & Mohajeri, P. (2023). Modeling the Dynamic Correlations among Cryptocurrencies: New Evidence from Multivariate Factor Stochastic Volatility Model. Journal of Money and Economy, 18(2), 263-284.‏ [DOI:10.61186/jme.18.2.263]
49. Yi, S., Xu, Z., & Wang, G. J. (2018). Volatility connectedness in the cryptocurrency market: Is Bitcoin a dominant cryptocurrency? International Review of Financial Analysis, 60, 98-114.‏ [DOI:10.1016/j.irfa.2018.08.012]
50. Zhang, J., & He, Q. Z. (2021). Dynamic cross-market volatility spillover based on MSV model: evidence from Bitcoin, Gold, Crude Oil, and stock markets. Complexity, 2021, 1-8.‏ [DOI:10.1155/2021/9912418]
Send email to the article author



XML   Persian Abstract   Print



Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
year 17, Issue 60 (9-2024) Back to browse issues page
فصلنامه پژوهش‌های پولی-بانکی Journal of Monetary & Banking Research
Persian site map - English site map - Created in 0.07 seconds with 37 queries by YEKTAWEB 4710