[صفحه اصلی ]   [Archive] [ English ]  
بخش‌های اصلی
صفحه اصلی
فرم ثبت‌ نام
فرم ارسال مقاله
اطلاعیه‌ها
برای نویسندگان و داوران
موضوع مقالات قابل چاپ
انواع مقالات قابل چاپ
ویژگی‌های فایل مقاله
ویژگی‌های باطن مقالات
ویژگی‌های ظاهر مقالات
صفحه‌کلید استاندارد فارسی
فرایند داوری و چاپ مقالات
فرم تعارض منافع
راهنما
راهنمای ثبت نام
راهنمای ارسال مقاله
راهنمای داوری مقالات
آرشیو مجله و مقالات
کلیه شماره‌های مجله
آخرین شماره
مقالات آماده انتشار
نمایه نویسندگان
نمایه واژه های کلیدی
اطلاعات نشریه
اهداف و زمینه‌ها
هیات تحریریه
اطلاعات نشریه
پیشینه نشریه
اصول اخلاقی نشریه
اسامی داوران
تماس با ما
اطلاعات تماس
فرم برقراری ارتباط
::
شبکه‌های اجتماعی


..
جستجو در پایگاه

جستجوی پیشرفته
..
دریافت اطلاعات از پایگاه
نشانی پست الکترونیک خود را برای دریافت اطلاعات و اخبار پایگاه، در کادر زیر وارد کنید.
..
آمار نشریه
تعداد دوره های نشریه: 18
تعداد شماره ها: 63
تعداد مشاهده ی مقالات: 1187378

مقالات دریافت شده: 2119
مقالات پذیرفته شده: 397
مقالات رد شده: 1604
مقالات منتشر شده: 384

نرخ پذیرش: 18.74
نرخ رد: 75.7

میانگین دریافت تا پذیرش: 248 روز
میانگین پذیرش تا انتشار: 71.3 روز
____
..
نشریات مرتبط

پژوهش‌های مالیه اسلامی

AWT IMAGE

(دوفصلنامه)

..
:: سال 17، شماره 60 - ( 6-1403 ) ::
سال 17 شماره 60 صفحات 259-233 برگشت به فهرست نسخه ها
ارائه راهکاری جهت تشخیص تقلب در تراکنش های بانکی با وجود رانش مفهوم و داده های نامتوازن
سعیده روشن فکر*1 ، علی گلزاده2
1- کارشناس ارشد تحلیل داده در شرکت داده و اعتبارسنجی تجارت ایرانیان، دانشجوی دکترای مهندسی کامپیوتر دانشگاه امیرکبیر
2- مدیرعامل شرکت داده و اعتبارسنجی تجارت ایرانیان، دکترای مهندسی کامپیوتر دانشگاه تهران
چکیده:   (304 مشاهده)
با افزایش تعداد کاربران بانکی در سراسر جهان، چالش‌های استفاده از کارت‌های بانکی ازجمله سرقت جزئیات کارت و تقلب نیز افزایش‌یافته است. تشخیص تقلب به‌صورت بلادرنگ  در تراکنش‌‌های کارت‌های بانکی به‌دلیل وجود ویژگی‌های ذاتی تراکنش‌ها، نظیر داده‌های نامتوازن  و رانش مفهوم ، چالش‌برانگیز است. درصورتی‌که دو چالش اصلی وجود داده‌های نامتوازن و رانش مفهوم هم‌زمان رخ دهد، تشخیص تقلب بسیار سخت‌تر خواهد شد. در این مقاله، یک الگوریتم طبقه‌بندی ترکیبی  مبتنی بر ماشین بردار پشتیبان به‌همراه به‌روزرسانی پویا ( ESVM-IC) به‌عنوان راهکاری برای حل این‌گونه مسائل در داده‌های تراکنش‌های کارت بانکی پیشنهاد شده است. این الگوریتم در مقایسه با دیگر الگوریتم‌های موجود، چند مزیت دارد: 1- نیازی به قطعه داده‌های  گذشته برای یادگیری قطعه دادهٔ جدید ندارد. 2- با استفاده از الگوریتم پیشنهادی، بر داده‌های به‌اشتباه طبقه‌بندی‌شده جهت اصلاح طبقه‌بندی آن‌ها تأکید دارد. 3- می‌تواند با شرایط جابه‌جایی جایگاه کلاس‌های  اقلیت  و اکثریت  منطبق شود. 4- تعداد محدودی از طبقه‌بندی‌های با کارایی بالاتر و نه لزوماً تمام آن‌ها را نگهداری می‌کند. جهت ارزیابی الگوریتم پیشنهادی از یک مجموعه دادهٔ واقعی بانکی استفاده شده است و نتایج با تعدادی از الگوریتم‌ها مقایسه شده است. نتایج حاصل نشان‌دهندهٔ افزایش دقت به میزان 93 درصد و معیار AUC 92 درصدی در تشخیص تقلب و کارایی الگوریتم پیشنهادی نسبت به الگوریتم‌های مورد مقایسه است.
شماره‌ی مقاله: 3
واژه‌های کلیدی: تشخیص تقلب، تراکنش های کارت های بانکی، رانش مفهوم، داده های نامتوازن، طبقه بندی داده های جریانی
متن کامل [PDF 1612 kb]   (114 دریافت)    
نوع مطالعه: مطالعه تجربی | موضوع مقاله: امور مالی و اداره شرکت‌ها (G3)
دریافت: 1402/9/17 | پذیرش: 1403/9/20 | انتشار: 1403/10/30
فهرست منابع
1. رفرنس های متنی مثل خروجی کراس رف را در اینجا وارد کرده و تایید کنید -------- Ade, R. R., & Deshmukh, P. R. (2013). Methods for incremental learning: A survey. International Journal of Data Mining & Knowledge Management Process, 3(4), 113. [DOI:10.5121/ijdkp.2013.3408]
2. Baena-García, M., del Campo-Ávila, J., & Fidalgo, R. (2006). Early drift detection method. In Fourth International Workshop on Knowledge Discovery from Data Streams (Vol. 6, pp. 77-86).
3. Barros, R. S., Cabral, D. R., & Gonçalves Jr, P. M. (2017). RDDM: Reactive drift detection method. Expert Systems with Applications, 90, 344-355. [DOI:10.1016/j.eswa.2017.08.023]
4. Bifet, A. (2009). Adaptive learning and mining for data streams and frequent patterns. ACM SIGKDD Explorations Newsletter, 11(1), 55-56. [DOI:10.1145/1656274.1656287]
5. Brzezinski, D., & Stefanowski, J. (2015). Prequential AUC for classifier evaluation and drift detection in evolving data streams. In New Frontiers in Mining Complex Patterns: Third International Workshop, NFMCP 2014, Held in Conjunction with ECML-PKDD 2014. [DOI:10.1007/978-3-319-17876-9_6]
6. Cano, A., & Krawczyk, B. (2022). ROSE: Robust online self-adjusting ensemble for continual learning on imbalanced drifting data streams. Machine Learning, 111(77), 2561-2599. [DOI:10.1007/s10994-022-06168-x]
7. Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE: Synthetic minority over-sampling technique. Journal of Artificial Intelligence Research, 16, 321-357. [DOI:10.1613/jair.953]
8. Chen, S., & He, H. (2009). SERA: Selectively recursive approach towards nonstationary imbalanced stream data mining. In 2009 International Joint Conference on Neural Networks (pp. 522-529). [DOI:10.1109/IJCNN.2009.5178874]
9. Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20, 273-297. https://doi.org/10.1007/BF00994018 [DOI:10.1023/A:1022627411411]
10. Ditzler, G., & Polikar, R. (2012). Incremental learning of concept drift from streaming imbalanced data. IEEE Transactions on Knowledge and Data Engineering, 25(10), 2283-2301. [DOI:10.1109/TKDE.2012.136]
11. Elwell, R., & Polikar, R. (2011). Incremental learning of concept drift in nonstationary environments. IEEE Transactions on Neural Networks, 22(10), 1517-1531. [DOI:10.1109/TNN.2011.2160459] [PMID]
12. Freund, Y., & Schapire, R. E. (1997). A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences, 55(1), 119-139. [DOI:10.1006/jcss.1997.1504]
13. Gomes, H. M., Barddal, J. P., Enembreck, F., & Bifet, A. (2017). A survey on ensemble learning for data stream classification. ACM Computing Surveys (CSUR), 50(2), 1-36. [DOI:10.1145/3054925]
14. Han, M., Zhang, X., Chen, Z., Wu, H., & Li, M. (2023). Dynamic ensemble selection classification algorithm based on window over imbalanced drift data stream. Knowledge and Information Systems, 65(3), 1105-1128. [DOI:10.1007/s10115-022-01791-5]
15. Han, M., Zhang, X., Chen, Z., Wu, H., & Li, M. (2023). Dynamic ensemble selection classification algorithm based on window over imbalanced drift data stream. Knowledge and Information Systems, 65(3), 1105-1128. [DOI:10.1007/s10115-022-01791-5]
16. Jain, M., Kaur, G., & Saxena, V. (2022). A K-Means clustering and SVM based hybrid concept drift detection technique for network anomaly detection. Expert Systems with Applications, 193, 116510. [DOI:10.1016/j.eswa.2022.116510]
17. Jiang, C., Song, J., Liu, G., Zheng, L., & Luan, W. (2018). Credit card fraud detection: A novel approach using aggregation strategy and feedback mechanism. IEEE Internet of Things Journal, 5(5), 3637-3647. [DOI:10.1109/JIOT.2018.2816007]
18. Jiao, B., Guo, Y., Gong, D., & Chen, Q. (2022). Dynamic ensemble selection for imbalanced data streams with concept drift. IEEE Transactions on Neural Networks and Learning Systems, 35(1), 1278-1291. [DOI:10.1109/TNNLS.2022.3183120] [PMID]
19. Kaggle. (n.d.). Credit card fraud dataset. Retrieved from https://www.kaggle.com/mlg-ulb/creditcardfraud
20. Kolter, J. Z., & Maloof, M. A. (2007). Dynamic weighted majority: An ensemble method for drifting concepts. The Journal of Machine Learning Research, 8, 2755-2790.
21. Krawczyk, B., Minku, L. L., Gama, J., & Stefanowski, J. (2017). Ensemble learning for data stream analysis: A survey. Information Fusion, 37, 132-156. [DOI:10.1016/j.inffus.2017.02.004]
22. Kulkarni, P., & Ade, R. (2014). Incremental learning from unbalanced data with concept class, concept drift and missing features: A review. International Journal of Data Mining & Knowledge Management Process, 4(6), 15. [DOI:10.5121/ijdkp.2014.4602]
23. Lu, J., Liu, A., Dong, F., Gu, F., Gama, J., & Zha, J. (2018). Learning under concept drift: A review. IEEE Transactions on Knowledge and Data Engineering, 31(12), 2346-2363. [DOI:10.1109/TKDE.2018.2876857]
24. Lu, Y., Cheung, Y. M., & Tang, Y. Y. (2017). Dynamic weighted majority for incremental learning of imbalanced data streams with concept drift. IJCAI (pp. 2393-2399). [DOI:10.24963/ijcai.2017/333]
25. Lu, Y., Cheung, Y. M., & Tang, Y. Y. (2019). Adaptive chunk-based dynamic weighted majority for imbalanced data streams with concept drift. IEEE Transactions on Neural Networks and Learning Systems, 31(8), 2764-2778. [DOI:10.1109/TNNLS.2019.2951814] [PMID]
26. Medianama. (2017, December). India 33.87m credit cards 826.3m debit cards October 2017. Retrieved from https://www.medianama.com/2017/12/223-india-33-87m-creditcards-826-3m-debit-cards-october-2017/
27. Medianama. (2017, July). India credit cards debit cards May 2017. Retrieved from https://www.medianama.com/2017/07/223-india-credit-cardsdebit-cards-may-2017/
28. Pocock, A., Yiapanis, P., Singer, J., & Luján, M. (2010). Online non-stationary boosting. In Multiple Classifier Systems: 9th International Workshop (pp. 205-214). [DOI:10.1007/978-3-642-12127-2_21]
29. Polikar, R., Upda, S. S., & Honavar, V. (2001). Learn++: An incremental learning algorithm for supervised neural networks. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 31(4), 497-508. [DOI:10.1109/5326.983933]
30. Somasundaram, A., & Reddy, U. S. (2016, September). Data imbalance: Effects and solutions for classification of large and highly imbalanced data. In International Conference on Research in Engineering, Computers and Technology (ICRECT 2016) (pp. 1-16). [DOI:10.1109/ICCIDS.2017.8272643] []
31. Somasundaram, A., & Reddy, U. S. (2017, June). Modelling a stable classifier for handling large scale data with noise and imbalance. In 2017 International Conference on Computational Intelligence in Data Science (ICCIDS) (pp. 1-6). [DOI:10.1109/ICCIDS.2017.8272643] []
32. Street, W. N., & Kim, Y. (2001). A streaming ensemble algorithm (SEA) for large-scale classification. In Proceedings of the seventh ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 377-382). [DOI:10.1145/502512.502568]
33. Wang, C., Chai, S., & Zhu, H. (2023). OpenDrift: Online evolving fraud detection for open-category and concept-drift transactions. In 2023 IEEE International Conference on Web Services (ICWS) (pp. 605-614). [DOI:10.1109/ICWS60048.2023.00079]
34. Wang, G., & Ma, J. (2012). A hybrid ensemble approach for enterprise credit risk assessment based on Support Vector Machine. Expert Systems with Applications, 39(5), 5325-5331. [DOI:10.1016/j.eswa.2011.11.003]
35. Wang, H., Fan, W., Yu, P. S., & Han, J. (2003). Mining concept-drifting data streams using ensemble classifiers. In Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 226-235). [DOI:10.1145/956750.956778]
36. Wang, S., Minku, L. L., & Yao, X. (2013). A learning framework for online class imbalance learning. In 2013 IEEE Symposium on Computational Intelligence and Ensemble Learning (CIEL) (pp. 36-45). [DOI:10.1109/CIEL.2013.6613138]
37. Wang, S., Minku, L. L., & Yao, X. (2014). Resampling-based ensemble methods for online class imbalance learning. IEEE Transactions on Knowledge and Data Engineering, 27(5), 1356-1368. [DOI:10.1109/TKDE.2014.2345380]
38. Wang, S., Minku, L. L., & Yao, X. (2018). A systematic study of online class imbalance learning with concept drift. IEEE Transactions on Neural Networks and Learning Systems, 29(10), 4802-4821. [DOI:10.1109/TNNLS.2017.2771290] [PMID]
39. Wang, S., Minku, L. L., & Yao, X. (2018). A systematic study of online class imbalance learning with concept drift. IEEE Transactions on Neural Networks and Learning Systems, 29(10), 4802-4821. [DOI:10.1109/TNNLS.2017.2771290] [PMID]
40. Wang, S., Minku, L. L., Ghezzi, D., & Caltabiano, D. (2013). Concept drift detection for online class imbalance learning. In The 2013 International Joint Conference on Neural Networks (IJCNN) (pp. 1-10). [DOI:10.1109/IJCNN.2013.6706768]
41. Widmer, G., & Kubat, M. (1996). Learning in the presence of concept drift and hidden contexts. Machine Learning, 23(1), 69-101. https://doi.org/10.1007/BF00116900 [DOI:10.1023/A:1018046501280]
42. Wu, K., Edwards, A., Fan, W., Gao, J., & Zhang, K. (2014). Classifying imbalanced data streams via dynamic feature group weighting with importance sampling. In Proceedings of the 2014 SIAM International Conference on Data Mining (pp. 722-730). [DOI:10.1137/1.9781611973440.83] [PMID] []
ارسال پیام به نویسنده مسئول



XML   English Abstract   Print



بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.
سال 17، شماره 60 - ( 6-1403 ) برگشت به فهرست نسخه ها
فصلنامه پژوهش‌های پولی-بانکی Journal of Monetary & Banking Research
Persian site map - English site map - Created in 0.07 seconds with 38 queries by YEKTAWEB 4713