[Home ] [Archive]   [ فارسی ]  
Main Menu
Home
Journal Information
Aims& Scopes
Editorial Board
About the Journal
Journal News
Articles archive
All Issues
Current Issue
Browse by Authors
Browse by Keywords
For Authors
Call for Papers
Submission Instruction
Submission Form
For Reviewers
Reviewers Section
Registration
Registration Information
Registration Form
Contact us
Contact Information
Contact us
Site Facilities
Site map
Search contents
FAQ
Top 10 contents
Inform to friends
::
MBRI Journals

Journal of Money & Economy

AWT IMAGE

(رتبه علمی-پژوهشی)

..
Related Journals

Journal of Islamic Finance Research

AWT IMAGE

(Biannual)

..
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
:: year 17, Issue 60 (9-2024) ::
JMBR 2024, 17(60): 211-232 Back to browse issues page
Empirical Characteristics of Inflation Uncertainty in Iran
Mojtaba Rostami *1 , Gholamhassan Taghinataj malekshah2 , Mohammadmehdi Momenzade3
1- Assistant Prof, Department of Management, Kashan University
2- Associate Professor, Department of Accounting and Auditing, Faculty of Accounting and Financial Sciences, College of Management, University of Tehran
3- Ph.D. Candidate in Accounting, University of Tehran, Tehran, Iran.
Abstract:   (152 Views)
Inflation uncertainty is as important as the inflation rate. Even if all prices in the economy are flexible, a change in this variable has serious welfare loss consequences for risk-averse economic agents. Therefore, modeling and forecasting inflation uncertainty is of importance. The uncertainty of future price levels increases the risk for long-term contracts and increases the cost of hedging against inflation. Hence, in order to minimize the cost of hedging and the loss of wealth, it is important to be able to model and predict the behavior of inflation uncertainty as much as possible. For this purpose, in the current research, the monthly inflation data of Iran was used in the period from April 2011 to March 2024. In this paper, a Markov regime switching model has been used. Assuming linear behavior in economic processes can provide useful approximations of their actual time paths. However, the existence of changes in the macroeconomic environment obliges policymakers to use nonlinear models. Because ignoring breaks and significant changes will lead to serious mistakes. Correct inferences about the inflation regime are of vital importance for the implementation of monetary policies. Additionally, in order to provide an accurate estimate of unconditional inflation uncertainty, each regime is allowed to use a separate conditional distribution. The results show that the important factor in the increase and persistence of inflation uncertainty in Iran is not the persistence of regimes caused by external shocks such as sanctions, but the persistence within the regime due to the empirical characteristics of this variable and economic policies. Also, further investigations in this research show that people have less expectation errors in the regime with low inflation Volatility.
Article number: 2
Full-Text [PDF 933 kb]   (77 Downloads)    
Type of Study: Empirical Study | Subject: Prices, Business Fluctuations, and Cycles (E3)
Received: 2024/08/12 | Accepted: 2024/12/10 | Published: 2025/01/19
References
1. نیلچی, م.؛ مومن‌زاده, م. م.؛ و فرهادیان, ع. (1402). ارتباط بین تورم و عدم قطعیت تورمی در اقتصاد ایران (رویکرد رگرسیون ناپارامتری و گسترش اخلال محدودشدهGARCH ). اقتصاد و الگوسازی، 14(2)، 1-35. doi: 10.48308/jem.2024.232380.1848
2. Ball, L. (1992). Why does high inflation raise inflation uncertainty? Journal of Monetary Economics29(3), 371-388. https://doi.org/10.1016/0304-3932(92)90032-W [DOI:10.1016/0304-3932(92)90032-w]
3. Ball, L., Cecchetti, S. G., & Gordon, R. J. (1990). Inflation and uncertainty at short and long horizons. Brookings Papers on Economic Activity, 1990(1), 215-254. [DOI:10.2307/2534528]
4. Barnett, W., Jawadi, F., & Ftiti, Z. (2020). Causal relationships between inflation and inflation uncertainty. Studies in Nonlinear Dynamics & Econometrics, 24(5), 20190094. [DOI:10.1515/snde-2019-0094]
5. Bollerslev, T. (1987). A conditionally heteroskedastic time series model for speculative prices and rates of return. The review of economics and statistics, 542-547. [DOI:10.2307/1925546]
6. Carter, M., & Maddock, R. (1984). Rational expectations: macroeconomics for the 1980s?. Springer. [DOI:10.1007/978-1-349-17644-1]
7. Choi, K., & Zivot, E. (2007). Long memory and structural changes in the forward discount: An empirical investigation. Journal of International Money and Finance, 26(3), 342-363. [DOI:10.1016/j.jimonfin.2007.01.002]
8. Conrad, C., & Karanasos, M. (2005). On the inflation-uncertainty hypothesis in the USA, Japan and the UK: A dual long memory approach. Japan and the World Economy, 17(3), 327-343. [DOI:10.1016/j.japwor.2004.03.002]
9. Davidson, P. (1972). Money and the real world. The Economic Journal, 82(325), 101-115. [DOI:10.2307/2230209]
10. Diebold, F. X., & Inoue, A. (1999). Long memory and structural change. Available at SSRN 267789.
11. Fischer, S., Hall, R. E., & Taylor, J. B. (1981). Relative shocks, relative price variability, and inflation. Brookings Papers on Economic Activity, 1981(2), 381-441. [DOI:10.2307/2534344]
12. Friedman, M. (1977). Nobel lecture: Inflation and unemployment. Journal of Political Economy,85(3), 451-472. [DOI:10.1086/260579]
13. Gao, X., Ren, Y., & Li, X. (2021). Time variation or asymmetry? The inflation and inflation uncertainty nexus: A case of China. Singapore Economic Review, 66(3), 881-903. [DOI:10.1142/S0217590819500760]
14. Granger, C. W., & Ding, Z. (1996). Varieties of long memory models. Journal of econometrics, 73(1), 61-77. [DOI:10.1016/0304-4076(95)01733-X]
15. Granger, C. W., & Hyung, N. (2004). Occasional structural breaks and long memory with an application to the S&P 500 absolute stock returns. Journal of empirical finance, 11(3), 399-421. [DOI:10.1016/j.jempfin.2003.03.001]
16. Grier, K. B., & Perry, M. J. (1998). On inflation and inflation uncertainty in the G7 countries. Journal of International Money and Finance, 17(4), 671-689. [DOI:10.1016/S0261-5606(98)00023-0]
17. Haas, M., Mittnik, S., & Paolella, M. S. (2004). A new approach to Markov-switching GARCH models. Journal of financial Econometrics, 2(4), 493-530. [DOI:10.1093/jjfinec/nbh020]
18. Holland, A. S. (1995). Inflation and uncertainty: Tests for temporal ordering. Journal of Money, Credit and Banking, 27(3), 827-837. Retrieved from: [DOI:10.2307/2077753]
19. Jiranyakul, K. (2020). The linkages between inflation and inflation uncertainty in selected Asian economies: Evidence from Quantile regression. Journal of Advanced Studies in Finance (JASF), 11(22), 74-80. [DOI:10.14505//jasf.v11.2(22).02]
20. Kontonikas, A. (2004). Inflation and inflation uncertainty in the United Kingdom, evidence from GARCH modelling. Economic modelling, 21(3), 525-543. [DOI:10.1016/j.econmod.2003.08.001]
21. Krämer, W., & Azamo, B. T. (2007). Structural change and estimated persistence in the GARCH (1, 1)-model. Economics letters, 97(1), 17-23. [DOI:10.1016/j.econlet.2007.02.012]
22. Kuncoro, H. (2024). Inflation and its uncertainty: Evidence from Indonesia and the Philippines. Global Journal of Emerging Market Economies, 16(2), 231-247. [DOI:10.1177/09749101221149873]
23. Lamoureux, C. G., & Lastrapes, W. D. (1990). Persistence in variance, structural change, and the GARCH model. Journal of Business & Economic Statistics, 8(2), 225-234. [DOI:10.1080/07350015.1990.10509794]
24. Mikosch, T., & Starica, C. (2000). Is it really long memory we see in financial returns. Extremes and integrated risk management, 12, 149-168.
25. Muth, J. F. (1961). Rational expectations and the theory of price movements. Econometrica: journal of the Econometric Society, 315-335. [DOI:10.2307/1909635]
26. Nene, S. T., Ilesanmi, K. D., & Sekome, M. (2022). The effect of inflation targeting policy on the inflation uncertainty and economic growth in selected African and European countries. Economies, 10(2), 37. https://doi. org/10.3390/economies10020037 [DOI:10.3390/economies10020037]
27. Pourgerami, A., & Maskus, K. E. (1987). The effects of inflation on the predictability of price changes in Latin America: Some estimates and policy implications. World Development, 15(2), 287-290. [DOI:10.1016/0305-750X(87)90083-0]
28. Raihan, T. (2017). Performance of Markov-Switching GARCH Model Forecasting Inflation Uncertainty.
29. Ungar, M., & Zilberfarb, B. (1993). Inflation and its unpredictability: Theory and empirical evidence. Journal of Money, Credit, and Banking, 25(4), 709-720. [DOI:10.2307/2077800]
30. Walther, T., Klein, T., Thu, H. P., & Piontek, K. (2017). True or spurious long memory in European non-EMU currencies. Research in international business and finance, 40, 217-230. [DOI:10.1016/j.ribaf.2017.01.003]
Send email to the article author



XML   Persian Abstract   Print



Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
year 17, Issue 60 (9-2024) Back to browse issues page
فصلنامه پژوهش‌های پولی-بانکی Journal of Monetary & Banking Research
Persian site map - English site map - Created in 0.06 seconds with 37 queries by YEKTAWEB 4710