[Home ] [Archive]   [ فارسی ]  
Main Menu
Home
Journal Information
Aims& Scopes
Editorial Board
About the Journal
Journal News
Articles archive
All Issues
Current Issue
Browse by Authors
Browse by Keywords
For Authors
Call for Papers
Submission Instruction
Submission Form
For Reviewers
Reviewers Section
Registration
Registration Information
Registration Form
Contact us
Contact Information
Contact us
Site Facilities
Site map
Search contents
FAQ
Top 10 contents
Inform to friends
::
MBRI Journals

Journal of Money & Economy

AWT IMAGE

(رتبه علمی-پژوهشی)

..
Related Journals

Journal of Islamic Finance Research

AWT IMAGE

(Biannual)

..
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
:: year 17, Issue 61 (11-2024) ::
JMBR 2024, 17(61): 353-386 Back to browse issues page
Identifying and prioritizing of the smart banking implementation barriers
Fatemeh Zahra Rajabi Kafshgar *
Abstract:   (388 Views)
Changes in information and communication technology, the advancement of artificial intelligence, the advancement of decision-making science and data science, and other related sciences have led to the movement and transition from traditional banking to smart banking as quickly as possible. Since there are many barriers and challenges in the way of this movement of banks, which are often in contradiction with each other in the real world and do not have the same importance to manage and adopt a behavioral strategy towards them, the present research seeks to identify and prioritize smart banking barriers based on the best-worst multi-criteria decision-making (BWM) expert oriented method. To show the efficiency of the research approach, a case study was used in the country's banking industry. In this regard, after reviewing the research literature, barriers to smart banking were identified. Then, by using the fuzzy Delphi method, these barriers were localized and screened to match the country's business environment. In the following, by using the BWM method, the importance of these barriers is determined. The results indicated that strategic, managerial, and extra-organizational barriers are the most important in moving toward smart banking. Finally, based on the results of the research, practical and research suggestions were presented. The current research includes a topic that has been less considered in the literature of this field, especially in Iran, analytically and quantitatively; Therefore, it can be the beginning of this path and be a guide for future more developed research in this field. Also, the results of this research are important for the managers and decision-makers of the country's banking sector and can lead to effective and efficient management of resources and remove them from the lack of concentration and confusion regarding the removal of barriers and the priority of each of them in implementation.
 
Article number: 1
Full-Text [PDF 1273 kb]   (71 Downloads)    
Type of Study: Empirical Study | Subject: Macroeconomic Policy, Macroeconomic Aspects of Public Finance, and General Outlook (E6)
Received: 2024/08/7 | Accepted: 2024/12/10 | Published: 2025/03/4
References
1. روانگرد، ف.، رونقی، م.، ابراهیمی، ا. (1۴0۲). چالش‌های استقرار بانکداری دیجیتالی در صنعت بانکداری. نشریهٔ علمی پژوهشی مدیریت کسب‌وکارهای بین‌المللی، ۶(۱).
2. ناصحی‌فر، و.، آرزمجو، ه.، تقوی فرد، م. (139۴). طراحی الگوی یکپارچه تغییرات در سازمان‌های ایرانی با استفاده از رویکرد دلفی فازی. فصلنامهٔ پژوهش‌های مدیریت منابع انسانی، ۷(۲).
3. Alagarsamy, S., & Mehrolia, S. (2023). Exploring chatbot trust: Antecedents and behavioural outcomes. Heliyon, 9(5). [DOI:10.1016/j.heliyon.2023.e16074] [PMID] []
4. Alfarizi, M., Widiastuti, T., & Ngatindriatun. (2024). Exploration of Technological Challenges and Public Economic Trends Phenomenon in the Sustainable Performance of Indonesian Digital MSMEs on Industrial Era 4.0. Journal of Industrial Integration and Management, 9(01), 65-96. [DOI:10.1142/S2424862223500045]
5. Almaiah, M. A., Al-Otaibi, S., Shishakly, R., Hassan, L., Lutfi, A., Alrawad, M., ... & Alghanam, O. A. (2023). Investigating the role of perceived risk, perceived security and perceived trust on smart m-banking application using SEM. Sustainability, 15(13), 9908. [DOI:10.3390/su15139908]
6. Aripin, Z., & Paramarta, V. (2024, February). Between innovation and challenges: utilization of blockchain and cloud platforms in the transformation of banking services in the digital era. In Journal of Jabar Economic Society Networking Forum, 1(3), 1-16.
7. Bouzon, M., Govindan, K., Rodriguez, C. M. T., & Campos, L. M. (2016). Identification and analysis of reverse logistics barriers using fuzzy Delphi method and AHP. Resources, Conservation and Recycling, 108, 182-197. [DOI:10.1016/j.resconrec.2015.05.021]
8. Cheng, C. H., & Lin, Y. (2002). Evaluating the best main battle tank using fuzzy decision theory with linguistic criteria evaluation. European Journal of Operational Research, 142(1), 174-186. [DOI:10.1016/S0377-2217(01)00280-6]
9. Chokkalingam, S. P., Krishna, P. V., Harshath, V., Reddy, C. B. K., & Sandeep, Y. S. (2024, February). Chat Bot in Banking Sector Using Machine Learning and Natural Language Processing. In International Conference on Computational Intelligence in Data Science (pp. 29-40). Cham: Springer Nature Switzerland. [DOI:10.1007/978-3-031-69982-5_3]
10. Climescu, A. M., von Keitz, C., Rocholl, J., & Sander, M. (2021). How can Robo-Advisory be implemented and integrated into existing banks? Robo-Advisory: Investing in the Digital Age, 187-223. [DOI:10.1007/978-3-030-40818-3_10]
11. Day, M. Y., Cheng, T. K., & Li, J. G. (2018, August). AI robo-advisor with big data analytics for financial services. In 2018 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM) (pp. 1027-1031). IEEE. [DOI:10.1109/ASONAM.2018.8508854]
12. Dalkey, N., & Helmer, O. (1963). An experimental application of the Delphi method to the use of experts. Management science, 9(3), 458-467. [DOI:10.1287/mnsc.9.3.458]
13. Diener, F., & Špaček, M. (2021). Digital transformation in banking: A managerial perspective on barriers to change. Sustainability, 13(4), 2032. [DOI:10.3390/su13042032]
14. Guo, Y., & Liang, C. (2016). Blockchain application and outlook in the banking industry. Financial innovation, 2, 1-12. [DOI:10.1186/s40854-016-0034-9]
15. Gyimah, K. N., Asiedu, E., & Antwi, F. (2023). Adoption of blockchain technology in the banking sector of Ghana: Opportunities and challenges. African Journal of Business Management, 17(2), 32-42. [DOI:10.5897/AJBM2022.9428]
16. Hamidi, H. O. J. A. T., & Karbasiyan, M. (2024). Presenting a Model to Detect the Fraud in Banking using Smart Enabling Tools. International Journal of Engineering, 37(3), 529-537. [DOI:10.5829/IJE.2024.37.03C.10]
17. Haro, B., Ortiz, C., & Armas, J. (2018, October). Predictive Model for the Evaluation of Credit Risk in Banking Entities Based on Machine Learning. In Brazilian Technology Symposium (pp. 605-612). Cham: Springer International Publishing. [DOI:10.1007/978-3-030-16053-1_59]
18. Hasan, M., Hoque, A., & Le, T. (2023). Big data-driven banking operations: Opportunities, challenges, and data security perspectives. FinTech, 2(3), 484-509. [DOI:10.3390/fintech2030028]
19. He, Z., Huang, J., & Zhou, J. (2023). Open banking: Credit market competition when borrowers own the data. Journal of financial economics, 147(2), 449-474. [DOI:10.1016/j.jfineco.2022.12.003]
20. Hess, T., Matt, C., Benlian, A., & Wiesböck, F. (2020). Options for formulating a digital transformation strategy. In Strategic information management (pp. 151-173). Routledge. [DOI:10.4324/9780429286797-7]
21. Hon, W. K., & Millard, C. (2018). Banking in the cloud: Part 1-banks' use of cloud services. Computer law & security review, 34(1), 4-24. [DOI:10.1016/j.clsr.2017.11.005]
22. Hu, Y., Manzoor, A., Ekparinya, P., Liyanage, M., Thilakarathna, K., Jourjon, G., & Seneviratne, A. (2019). A delay-tolerant payment scheme based on the ethereum blockchain. IEEE Access, 7, 33159-33172. [DOI:10.1109/ACCESS.2019.2903271]
23. Indriasari, E., Gaol, F. L., & Matsuo, T. (2019, July). Digital banking transformation: Application of artificial intelligence and big data analytics for leveraging customer experience in the Indonesia banking sector. In 2019 8th International Congress on Advanced Applied Informatics (IIAI-AAI) (pp. 863-868). IEEE. [DOI:10.1109/IIAI-AAI.2019.00175]
24. Indriasari, E., Prabowo, H., Gaol, F. L., & Purwandari, B. (2022). Intelligent Digital Banking Technology and Architecture: A Systematic Literature Review. International Journal of Interactive Mobile Technologies, 16(19). [DOI:10.3991/ijim.v16i19.30993]
25. Ityala, S., Sharma, O., & Honnavalli, P. B. (2020). Transparent watermarking QR code authentication for mobile banking applications. In Inventive Computation Technologies 4 (pp. 738-748). Springer International Publishing. [DOI:10.1007/978-3-030-33846-6_80]
26. Johora, F. T., Hasan, R., Farabi, S. F., Akter, J., & Al Mahmud, M. A. (2024). AI-Powered Fraud Detection in Banking: Safeguarding Financial Transactions. The American Journal of Management and Economics Innovations, 6(06), 8-22. [DOI:10.37547/tajmei/Volume06Issue06-02]
27. Jung, D., Dorner, V., Weinhardt, C., & Pusmaz, H. (2018). Designing a robo-advisor for risk-averse, low-budget consumers. Electronic Markets, 28, 367-380. [DOI:10.1007/s12525-017-0279-9]
28. Khashan, M. A., Elsotouhy, M. M., Ghonim, M. A., & Alasker, T. H. (2024). Smart customer experience, customer gratitude, P-WOM and continuance intentions to adopt smart banking services: the moderating role of technology readiness. The TQM Journal, 36(7), 1976-1995. [DOI:10.1108/TQM-01-2023-0006]
29. Kirss, K. K., & Milani, F. (2020). Using Blockchain Technology to Redesign Know-Your-Customer Processes Within the Banking Industry. In Business Process Management Workshops: BPM 2020 International Workshops, Seville, Spain, September 13-18, 2020, Revised Selected Papers 18 (pp. 251-262). Springer International Publishing. [DOI:10.1007/978-3-030-66498-5_19]
30. Königstorfer, F., & Thalmann, S. (2020). Applications of Artificial Intelligence in commercial banks-A research agenda for behavioral finance. Journal of behavioral and experimental finance, 27, 100352. [DOI:10.1016/j.jbef.2020.100352]
31. Liang, F., Brunelli, M., & Rezaei, J. (2020). Consistency issues in the best worst method: Measurements and thresholds. Omega, 96, 102175. [DOI:10.1016/j.omega.2019.102175]
32. Liu, Y., Alzahrani, I. R., Jaleel, R. A., & Al Sulaie, S. (2023). An efficient smart data mining framework-based cloud internet of things for developing artificial intelligence of marketing information analysis. Information Processing & Management, 60(1), 103121. [DOI:10.1016/j.ipm.2022.103121]
33. Mansoor, N., Antora, K. F., Deb, P., Arman, T. A., Manaf, A. A., & Zareei, M. (2023). A review of blockchain approaches for kyc. IEEE Access. [DOI:10.1109/ACCESS.2023.3328536]
34. Mbaidin, H. O., Alsmairat, M. A., & Al-Adaileh, R. (2023). Blockchain adoption for sustainable development in developing countries: Challenges and opportunities in the banking sector. International Journal of Information Management Data Insights, 3(2), 100199. [DOI:10.1016/j.jjimei.2023.100199]
35. Mohamed, A., & Faisal, R. (2024). Exploring metaverse-enabled innovation in banking: Leveraging NFTS, blockchain, and smart contracts for transformative business opportunities. International Journal of Data and Network Science, 8(1), 35-44. [DOI:10.5267/j.ijdns.2023.10.020]
36. Mondal, A., & Singh, A. (2018). Emerging technologies and opportunities for innovation in financial data analytics: a perspective. In Big Data Analytics: 6th International Conference, BDA 2018, Warangal, India, December 18-21, 2018, Proceedings 6 (pp. 126-136). Springer International Publishing. [DOI:10.1007/978-3-030-04780-1_9]
37. Moşteanu, D. N. R., Faccia, D. A., Cavaliere, L. P. L., & Bhatia, S. (2020). Digital technologies' implementation within financial and banking system during socio distancing restrictions-back to the future. International Journal of Advanced Research in Engineering and Technology, 11(6).
38. Mozumder, M. A. S., Mahmud, F., Shak, M. S., Sultana, N., Rodrigues, G. N., Al Rafi, M., ... & Bhuiyan, M. S. M. (2024). Optimizing Customer Segmentation in the Banking Sector: A Comparative Analysis of Machine Learning Algorithms. Journal of Computer Science and Technology Studies, 6(4), 01-07. [DOI:10.32996/jcsts.2024.6.4.1]
39. Normalini, M. K., & Ramayah, T. (2015). A Proposed Biometrics Technologies Implementation in Malaysia Internet Banking Services. In Innovation, Finance, and the Economy: Proceedings of the 13th Eurasia Business and Economics Society Conference (pp. 79-87). Springer International Publishing. [DOI:10.1007/978-3-319-15880-8_7]
40. Nosrati, L., Bidgoli, A. M., & Javadi, H. H. S. (2024). Identifying People's Faces in Smart Banking Systems Using Artificial Neural Networks. International Journal of Computational Intelligence Systems, 17(1), 9. [DOI:10.1007/s44196-023-00383-7]
41. Nuthalapati, A. (2023). Smart Fraud Detection Leveraging Machine Learning for Credit Card Security. Educational Administration: Theory and Practice, 29(2), 433-443. [DOI:10.53555/kuey.v29i2.6907]
42. Omran, M., Hamza, K., & Elghamrawy, S. (2024). Advancing Customer Segmentation in Banking: Harnessing Machine Learning and H2O for Personalized Insights. In International Conference on Advanced Intelligent Systems and Informatics (pp. 246-256). Springer, Cham. [DOI:10.1007/978-3-031-71619-5_21]
43. Patil, S., Nemade, V., & Soni, P. K. (2018). Predictive modelling for credit card fraud detection using data analytics. Procedia computer science, 132, 385-395. [DOI:10.1016/j.procs.2018.05.199]
44. Petersson, A. H., Pawar, S., & Fagerstrøm, A. (2023). Investigating the factors of customer experiences using real-life text-based banking chatbot: A qualitative study in Norway. Procedia Computer Science, 219, 697-704. [DOI:10.1016/j.procs.2023.01.341]
45. Prabhu, C. S. R., Chivukula, A. S., Mogadala, A., Ghosh, R., Livingston, L. J., Prabhu, C. S. R., ... & Livingston, L. J. (2019). Big data analytics for financial services and banking. Big data analytics: Systems, algorithms, applications, 249-256. [DOI:10.1007/978-981-15-0094-7_9]
46. Ravi, V., & Kamaruddin, S. (2017). Big data analytics enabled smart financial services: opportunities and challenges. In Big Data Analytics: 5th International Conference, BDA 2017, Hyderabad, India, December 12-15, 2017, Proceedings 5 (pp. 15-39). Springer International Publishing. [DOI:10.1007/978-3-319-72413-3_2]
47. Rezaei, J. (2015). Best-worst multi-criteria decision-making method. Omega, 53, 49-57. [DOI:10.1016/j.omega.2014.11.009]
48. Rezaei, J. (2016). Best-worst multi-criteria decision-making method: Some properties and a linear model. Omega, 64, 126-130. [DOI:10.1016/j.omega.2015.12.001]
49. Rezaei, J., Arab, A., & Mehregan, M. (2024). Analyzing anchoring bias in attribute weight elicitation of SMART, Swing, and best‐worst method. International Transactions in Operational Research, 31(2), 918-948. [DOI:10.1111/itor.13171]
50. Rezaei, J., Arab, A., & Mehregan, M. (2022). Equalizing bias in eliciting attribute weights in multiattribute decision‐making: experimental research. Journal of Behavioral Decision Making, 35(2), e2262. [DOI:10.1002/bdm.2262]
51. Safarpour, M. (2016). Identification and ranking the barriers to adoption and development of electronic banking in Iran. Procedia Economics and Finance, 36, 374-380. [DOI:10.1016/S2212-5671(16)30049-1]
52. Saheb, T., & Mamaghani, F. H. (2021). Exploring the barriers and organizational values of blockchain adoption in the banking industry. The Journal of High Technology Management Research, 32(2), 100417. [DOI:10.1016/j.hitech.2021.100417]
53. Sarokolaei, M. A., Rahimipoor, A., Nadimi, S., & Taheri, M. (2012). The investigating of barriers of development of e-banking in Iran. Procedia-Social and Behavioral Sciences, 62, 1100-1106. [DOI:10.1016/j.sbspro.2012.09.188]
54. Sharma, A., Sharma, D., & Bansal, R. (2023). Emerging Role of Blockchain in Banking Operations: An Overview. Contemporary Studies of Risks in Emerging Technology, Part A, 1-12. [DOI:10.1108/978-1-80455-562-020231001]
55. Singh, A., Ramasubramanian, K., Shivam, S., Singh, A., Ramasubramanian, K., & Shivam, S. (2019). Processes in the Banking and Insurance Industries. Building an Enterprise Chatbot: Work with Protected Enterprise Data Using Open-Source Frameworks, 1-18. [DOI:10.1007/978-1-4842-5034-1_1]
56. Stiefmueller, C. M. (2020). Open banking and PSD 2: the promise of transforming banking by 'empowering customers'. In Advances in the Human Side of Service Engineering: Proceedings of the AHFE 2020 Virtual Conference on The Human Side of Service Engineering, July 16-20, 2020, USA (pp. 299-305). Springer International Publishing. [DOI:10.1007/978-3-030-51057-2_41]
57. Stjepić, A. M., Ivančić, L., & Vugec, D. S. (2020). Mastering digital transformation through business process management: Investigating alignments, goals, orchestration, and roles. Journal of entrepreneurship, management and innovation, 16(1), 41-74. [DOI:10.7341/20201612]
58. Sugiharto, B., Simanungkalit, R. V., Siregar, I., & Andriani, M. (2023). Artificial Intelligence (AI) Architecture for Integrated Smart Digital Banking System. Jurnal Penelitian Pendidikan IPA, 9(10), 876-882. [DOI:10.29303/jppipa.v9i10.4645]
59. Suseendran, G., Chandrasekaran, E., Akila, D., & Sasi Kumar, A. (2020). Banking and FinTech (financial technology) embraced with IoT device. In Data Management, Analytics and Innovation: Proceedings of ICDMAI 2019, Volume 1 (pp. 197-211). Springer Singapore. [DOI:10.1007/978-981-32-9949-8_15]
60. Thar, K. W., & Wai, T. T. (2024, March). Machine Learning Based Predictive Modelling for Fraud Detection in Digital Banking. In 2024 IEEE Conference on Computer Applications (ICCA) (pp. 1-5). IEEE. [DOI:10.1109/ICCA62361.2024.10532788]
61. Tyagi, A. K., Dananjayan, S., Agarwal, D., & Thariq Ahmed, H. F. (2023). Blockchain-Internet of Things applications: Opportunities and challenges for industry 4.0 and society 5.0. Sensors, 23(2), 947. [DOI:10.3390/s23020947] [PMID] []
62. Vassilev, V., Phipps, A., Lane, M., Mohamed, K., & Naciscionis, A. (2020, January). Two-factor authentication for voice assistance in digital banking using public cloud services. In 2020 10th International Conference on Cloud Computing, Data Science & Engineering (Confluence) (pp. 404-409). IEEE. [DOI:10.1109/Confluence47617.2020.9058332]
63. Vittala, K. P., Nagarathnamma, J., Chidambaram, N., & Tyagi, A. K. (2025). Smart Financial Services Through Smart Banking in the Era of Industry 5.0: Opportunities and Challenges. Creating AI Synergy Through Business Technology Transformation, 203-226. [DOI:10.4018/979-8-3693-4187-2.ch010]
64. Weerabahu, D., Gamage, A., Dulakshi, C., Ganegoda, G. U., & Sandanayake, T. (2019). Digital assistant for supporting bank customer service. In Artificial Intelligence: Second International Conference, SLAAI-ICAI 2018, Moratuwa, Sri Lanka, December 20, 2018, Revised Selected Papers 2 (pp. 177-186). Springer Singapore. [DOI:10.1007/978-981-13-9129-3_13]
65. Yalamati, S. (2024). Data Privacy, Compliance, and Security in Cloud Computing for Finance. In Practical Applications of Data Processing, Algorithms, and Modeling (pp. 127-144). IGI Global. [DOI:10.4018/979-8-3693-2909-2.ch010]
66. Yan, L. Y., Tan, G. W. H., Loh, X. M., Hew, J. J., & Ooi, K. B. (2021). QR code and mobile payment: The disruptive forces in retail. Journal of Retailing and Consumer Services, 58, 102300. [DOI:10.1016/j.jretconser.2020.102300] []
67. Zeynalova, A. (2024). From Closed Banking to Open Banking: Risks and Opportunities. Journal of Applied Business, Taxation and Economics Research, 3(3), 303-316. [DOI:10.54408/jabter.v3i3.278]
68. Zhang, H., Zhang, F., Gong, B., Zhang, X., & Zhu, Y. (2023). The optimization of supply chain financing for bank green credit using stackelberg game theory in digital economy under internet of things. Journal of Organizational and End User Computing (JOEUC), 35(3), 1-16. https://doi.org/10.4018/JOEUC.333472 https://doi.org/10.4018/JOEUC.326932 https://doi.org/10.4018/JOEUC.318474 https://doi.org/10.4018/JOEUC.316165 [DOI:10.4018/JOEUC.325214]
69. Zhao, S., Miao, J., Zhao, J., & Naghshbandi, N. (2023). A comprehensive and systematic review of the banking systems based on pay-as-you-go payment fashion and cloud computing in the pandemic era. Information Systems and e-Business Management, 1-29. [DOI:10.1007/s10257-022-00617-9] []
Send email to the article author



XML   Persian Abstract   Print



Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
year 17, Issue 61 (11-2024) Back to browse issues page
فصلنامه پژوهش‌های پولی-بانکی Journal of Monetary & Banking Research
Persian site map - English site map - Created in 0.09 seconds with 37 queries by YEKTAWEB 4713