1. Anastasiou, D., Louri, H., & Tsionas, M. (2016). Determinants of non-performing Loans: Evidence from Euro-area countries. International Journal of Finance and Economics, 18(C): 116-119. [ DOI:10.1016/j.frl.2016.04.008] 2. Abid, L., Masmoudi, A., & Zouari-Ghorbel, S. (2016). The consumer loans payment default predictive model: An application of the logistic regression and the dis- criminant analysis in a tunisian commercial bank. Journal of the Knowledge Econ- omy, 1-15. [ DOI:10.1007/s13132-016-0382-8] 3. Altman, E. I. (1968). Financial ratios, discriminant analysis and the prediction of cor- porate bankruptcy. The Journal of Finance, 23(4): 589-609. [ DOI:10.1111/j.1540-6261.1968.tb00843.x] 4. Anginer, D., Demirguc-Kunt, A., & Zhu, M. (2014). How does competition Affect Bank Systemic Risk? Journal of Financial Intermediation, 23: 1-26. [ DOI:10.1016/j.jfi.2013.11.001] 5. Hamerle, A., Liebig, T. & Rosch, D. (2003). Credit risk factor modeling and the Basel II IRB approach banking and financial supervision, 2(02/2003). [ DOI:10.2139/ssrn.2793952] 6. Baesens, B., & Smedts, K. (2023). Boosting credit risk models. Journal of the British Accounting Review. Published by Elsevier Ltd. 7. Bakhtiar, M., Moayedfar, R., Vaez Barzani, M., & Mojab, R. (2022). Investigating the three dimensions of credit risk of banks in Iran with an emphasis on the geographical location of the enterprise. Quarterly Journal of The Economic Research (Sustainable Growth and Development), 23(1): 221-247 (in Persian). 8. Beck, R., Jakubik, P., & Piloiu, A. (2015). Key determinants of non-performing loans: New evidence from a global sample. Open Economies Review, 26(3): 525-550. [ DOI:10.1007/s11079-015-9358-8] 9. Bijak, K., & Thomas, L. C. (2012). Does segmentation always improve model performance in credit scoring? Expert Systems with Applications, 39(3): 2433-2442. [ DOI:10.1016/j.eswa.2011.08.093] 10. Cheng, J., R., Greiner, J., Kelly, D.A. Bell, & W. Liu. (2002). Learning Bayesian networks from data: An information theory based approach. Artificial Intelligence, 137: 43- 90. [ DOI:10.1016/S0004-3702(02)00191-1] 11. Espinoza, R., & Prasad, A. (2010). Nonperforming loans in the GCC banking system and their macroeconomic effects. Working Paper 224: International Monetary Fund. [ DOI:10.5089/9781455208890.001] 12. García, V., Marqués, A. I., & Sánchez, J. S. (2015). An insight into the experimental design for credit risk and corporate bankruptcy prediction systems. Journal of Intelligent Information Systems, 44(1): 159-189. [ DOI:10.1007/s10844-014-0333-4] 13. Ghosh, A. (2015). Banking-industry specific and regional economic determinants of non-performing loans: Evidence from US states. Journal of Financial Stability, 20: 93-104. [ DOI:10.1016/j.jfs.2015.08.004] 14. Heckerman, D, Geiger, D & Chickering, D. M. (1995). Learning BNs: The combination of knowledge and statistical data. Machine Learning, 20: 197-243. [ DOI:10.1023/A:1022623210503] 15. Hand, D. J., & Henley, W. E. (1997). Statistical classification methods in consumer credit scoring: A review. Journal of the Royal Statistical Society: Series A, 160(3): 523-541. [ DOI:10.1111/j.1467-985X.1997.00078.x] 16. Harris, T. (2015). Credit scoring using the clustered support vector machine. Expert Systems with Applications, 42(2): 741-750. [ DOI:10.1016/j.eswa.2014.08.029] 17. Jeyhoonipour, M., Azami, S., & Delangizan, S., (2025). Modeling and identification of causal relationships between the main factors of credit risk in the banking system using the Dematel decision making technique, The Journal of Economic Policy, 17(33): 180-211(in Persian). 18. Jimenez, G., & Saurina, J. (2006). Credit cycles, credit risk, and prudential regulation. International Journal of Central Banking, 2(2): 65-98. 19. Karadima, M., & Louri, H. (2021). Determinants of non-performing loans in Greece: The intricate role of fiscal expansion. Hellenic Observatory Papers on Greece and Southeast Europe. Greese Paper, No. 160. 20. Kauko, K. (2012). External deficits and non-performing loans in the recent financial crisis. Economics Letters, 115: 196-199. [ DOI:10.1016/j.econlet.2011.12.018] 21. Keshavarz hadad, GH., & Ayati Gazar, H. (2007). Comparison between regression and classification trees logit model and in the process of credit scoring for individual customers of a bank. Quarterly Journal of The Economic Research (Sustainable Growth and Development), 7(4): 71-97. (in Persian). 22. Kick, T., & Prieto, E. (2015). Bank risk taking and competition: Evidence from regional banking markets. Review of Finance, 19(3): 1185-1222. [ DOI:10.1093/rof/rfu019] 23. Klein, N. (2013). Non-performing Loans in CESEE: Determinants and Impact on Macroeconomic Performance. IMF Working Paper, 01, 27. [ DOI:10.5089/9781484318522.001] 24. Koju, L., Koju, R., & Wang, S. (2018). Macroeconomic and bank-specific determinants of non-performing loans: Evidence from Nepalese banking system. Journal of Central Banking Theory and Practice, 3: 111-138. [ DOI:10.2478/jcbtp-2018-0026] 25. Koller, D. & N. Friedman. (2010). Probabilistic graphical models: Principles and techniques. Cambridge, MA/London, England, The MIT Press. 26. Leong, C. K. (2016). Credit risk scoring with Bayesian network models. Computational Economics, 47(3): 423-446. [ DOI:10.1007/s10614-015-9505-8] 27. Lessmann, S., Baesens, B., Seow, H.-V., & Thomas, L. C. (2015). Benchmarking state-of-the-art classification algorithms for credit scoring: An update of re- search. European Journal of Operational Research, 247(1): 124-136. [ DOI:10.1016/j.ejor.2015.05.030] 28. Louzada, F., Ara, A., & Fernandes, G. B. (2016). Classification methods applied to credit scoring: systematic review and overall comparison. Surveys in Operations Research and Management Science. [ DOI:10.1016/j.sorms.2016.10.001] 29. Louzis, D., Vouldis., A., & Metaxas, V. (2012). Macroeconomic and bankspecific determinants of Npls in Greece: A Comparative study of mortgage, business and consumer loan portfolios. Journal of Banking and Finance, 36: 1012-1027. [ DOI:10.1016/j.jbankfin.2011.10.012] 30. Makri, V., Tsagkanos, A., & Bellas, A. (2014). Determinants of non-performing loans: The case of Eurozone. Panoeconomicus, 61(2): 193-206. [ DOI:10.2298/PAN1402193M] 31. Mancisidor, R, A., Kampffmeyer, M., Aas, K., & Jenssen, R. (2022). Generating customer's credit behavior with deep generative models. Journal of Knowledge-Based Systems, 245. [ DOI:10.1016/j.knosys.2022.108568] 32. Margaritis, D. (2003). Learning bayesian network model structure from data (PhD Thesis of CMU-CS :03-153). 33. Masmoudi, Kh., Abid, L., & Masmoudi, A. (2019). Credit risk modeling using Bayesian network with a latent variable. Expert Systems with Applications, 127: 157-166. [ DOI:10.1016/j.eswa.2019.03.014] 34. Mehrara, M., Mosaee, M., Tasavori, M., & Hasanzadeh, A. (2011). Credit ranking of parsian bank legal customers. Quarterly Journal of The Economic Modeling, 3(3): 121-150. (in Persian). 35. Mehrara, M., Mohamadi, F., & Jadidzadeh, A. (2024). Credit risk management for enhancing facilities allocation to bank customers. Quarterly Journal of monetary and banking research, 17(61): 477-497 (in Persian). [ DOI:10.61186/jmbr.17.61.535] 36. Nkusu, M. M. (2011). Nonperforming loans and macrofinancial vulnerabilities in advanced economies. International Monetary Fund. [ DOI:10.5089/9781455297740.001] 37. Ozturk, H., Namli, E., & Erdal, H.I. (2016). Modelling sovereign credit ratings: The accuracy of models in a heterogeneous sample. Economic Modelling, 54: 469-478. [ DOI:10.1016/j.econmod.2016.01.012] 38. Pearl, J. (1988). Morgan Kaufmann series in representation and reasoning. proba-bilistic reasoning in intelligent systems: Networks of plausible inference. 39. Podpiera J., & Weill, L. (2008). Bad Luck or Bad Management? emerging banking market experience. Journal of Financial Stability, 4: 135-148. [ DOI:10.1016/j.jfs.2008.01.005] 40. Rinaldi, L., & Sanchis-Arellano, A. (2006). Household debt sustainability: what explains household non-performing loans? An empirical analysis. Working Paper No. 570, European Central Bank. [ DOI:10.2139/ssrn.872528] 41. Sucar, L.E. & Martinez-Arroyo, M. (1998). Interactive structural learning of bayesian networks. Expert Systems with Applications, 15(3-4): 325-332. [ DOI:10.1016/S0957-4174(98)00050-5] 42. Tari, F., Ebrahimi, S, A., Mosavi, S, J., & Kalantari, M. (2017). Comparison of neural network, genetic algorithm and logit models in evaluating customers' credit risk. Quarterly Journal of monetary and banking research, 10(34): 657-680 (in Persian). 43. Tavana, M., Abtahi, A.-R., Di Caprio, D., & Poortarigh, M. (2018). An artificial neural network and Bayesian network model for liquidity risk assessment in banking. Neurocomputing, 275: 2525-2554. [ DOI:10.1016/j.neucom.2017.11.034] 44. Thomas, L. C., Edelman, D., & Crook, J. (2002). Credit scoring and its applications: Siam monographs on mathematical modeling and computation. Philadelphia: Uni-versity City Science Center, SIAM. [ DOI:10.1137/1.9780898718317] 45. Tomczak, J. M., & Zieba, M. (2015). Classification restricted Boltzmann machine for comprehensible credit scoring model. Expert Systems with Applications, 42(4): 1789-1796. [ DOI:10.1016/j.eswa.2014.10.016] 46. Vithessonthi, C. (2016). Deflation, bank credit growth, and non-performing loans: Evidence from Japan. International Review of Financial Analysis, 45: 295-305. [ DOI:10.1016/j.irfa.2016.04.003] 47. Wang, Y., Zhang, Y., Lu, Y & Yu, X. (2020). A comparative assessment of credit risk model based on machine learning: A case study of bank loan data. Procedia Computer Science, 174: 141-149. [ DOI:10.1016/j.procs.2020.06.069] 48. Yurttadur, M, Celiktas, E & Celiktas, E. (2019). The place of non-performing loans in the Turkish banking sector. Procedia Computer Science, 158: 766-771. [ DOI:10.1016/j.procs.2019.09.113] 49. Zhao, Z., Xu, S., Kang, B. H., Kabir, M. M. J., Liu, Y., & Wasinger, R. (2015). Investi- gation and improvement of multi-layer perceptron neural networks for credit scoring. Expert Systems with Applications, 42(7): 3508-3516. [ DOI:10.1016/j.eswa.2014.12.006]
|